Earth

Earth  Astronomical symbol of Earth
A planetary disk of white cloud formations, brown and green land masses, and dark blue oceans against a black background. The Arabian peninsula, Africa and Madagascar lie in the upper half of the disk, while Antarctica is at the bottom.
"Blue Marble" photograph of Earth,
taken from Apollo 17
Designations
Pronunciation /en-us-earth.oggˈɜrθ/
Adjective earthly, tellurian, telluric, terran, terrestrial.
Epoch J2000.0[note 1]
Aphelion 152,098,232 km
1.01671388 AU[note 2]
Perihelion 147,098,290 km
0.98329134 AU[note 2]
Semi-major axis 149,598,261 km
1.00000261 AU[1]
Eccentricity 0.01671123[1]
Orbital period 365.256363004 days[2]
1.000017421 yr
Average orbital speed 29.78 km/s[3]
107,200 km/h
Inclination 7.155° to Sun's equator
1.57869°[4] to invariable plane
Longitude of ascending node 348.73936°[3][note 3]
Argument of perihelion 114.20783°[3][note 4]
Satellites 1 (the Moon)
Physical characteristics
Mean radius 6,371.0 km[5]
Equatorial radius 6,378.1 km[6]
Polar radius 6,356.8 km[7]
Flattening 0.0033528[6]
Circumference 40,075.16 km (equatorial)[8]
40,008.00 km (meridional)[8]
Surface area 510,072,000 km2[9][10][note 5]

148,940,000 km2 land (29.2 %)

361,132,000 km2 water (70.8 %)
Volume 1.08321 × 1012 km3[3]
Mass 5.9736 × 1024 kg[3]
Mean density 5.515 g/cm3[3]
Equatorial surface gravity 9.780327 m/s2[11]
0.99732 g
Escape velocity 11.186 km/s[3]
Sidereal rotation
period
0.99726968 d[12]
23h 56m 4.100s
Equatorial rotation velocity 1,674.4 km/h (465.1 m/s)[13]
Axial tilt 23°26'21".4119[2]
Albedo 0.367[3]
Surface temp.
   Kelvin
   Celsius
min mean max
184 K[14] 287.2 K[15] 331 K[16]
-89.2 °C 14 °C 57.8 °C
Atmosphere
Surface pressure 101.325 kPa (MSL)
Composition 78.08% nitrogen (N2)[3]
20.95% oxygen (O2)
0.93% argon
0.038% carbon dioxide
About 1% water vapor (varies with climate)

Earth (or the Earth) is the third planet from the Sun, and the densest and fifth-largest of the eight planets in the Solar System. It is also the largest of the Solar System's four terrestrial planets. It is sometimes referred to as the World, the Blue Planet,[note 6] or by its Latin name, Terra.[note 7]

Home to millions of species[17] including humans, Earth is currently the only place in the universe where life is known to exist. The planet formed 4.54 billion years ago,[18] and life appeared on its surface within a billion years. Earth's biosphere has significantly altered the atmosphere and other abiotic conditions on the planet, enabling the proliferation of aerobic organisms as well as the formation of the ozone layer which, together with Earth's magnetic field, blocks harmful solar radiation, permitting life on land.[19] The physical properties of the Earth, as well as its geological history and orbit, have allowed life to persist during this period. The planet is expected to continue supporting life for at least another 500 million years.[20][21]

Earth's outer surface is divided into several rigid segments, or tectonic plates, that migrate across the surface over periods of many millions of years. About 71% of the surface is covered with salt water oceans, the remainder consisting of continents and islands which together have many lakes and other sources of water contributing to the hydrosphere. Liquid water, necessary for all known life, is not known to exist on any other planet's surface.[note 8][note 9] Earth's poles are mostly covered with solid ice (Antarctic ice sheet) or sea ice (Arctic ice cap). The planet's interior remains active, with a thick layer of relatively solid mantle, a liquid outer core that generates a magnetic field, and a solid iron inner core.

Earth interacts with other objects in space, especially the Sun and the Moon. At present, Earth orbits the Sun once for every roughly 366.26 times it rotates about its axis, which is equal to 365.26 solar days, or one sidereal year.[note 10] The Earth's axis of rotation is tilted 23.4° away from the perpendicular to its orbital plane,[22] producing seasonal variations on the planet's surface with a period of one tropical year (365.24 solar days). Earth's only known natural satellite, the Moon, which began orbiting it about 4.53 billion years ago, provides ocean tides, stabilizes the axial tilt and gradually slows the planet's rotation. Between approximately 3.8 billion and 4.1 billion years ago, numerous asteroid impacts during the Late Heavy Bombardment caused significant changes to the greater surface environment.

Both the mineral resources of the planet, as well as the products of the biosphere, contribute resources that are used to support a global human population. These inhabitants are grouped into about 200 independent sovereign states, which interact through diplomacy, travel, trade, and military action. Human cultures have developed many views of the planet, including personification as a deity, a belief in a flat Earth or in Earth as the center of the universe, and a modern perspective of the world as an integrated environment that requires stewardship.

Contents

Chronology

Scientists have been able to reconstruct detailed information about the planet's past. The earliest dated Solar System material is dated to 4.5672 ± 0.0006 billion years ago,[23] and by 4.54 billion years ago (within an uncertainty of 1%)[18] the Earth and the other planets in the Solar System had formed out of the solar nebula—a disk-shaped mass of dust and gas left over from the formation of the Sun. This assembly of the Earth through accretion was thus largely completed within 10–20 million years.[24] Initially molten, the outer layer of the planet Earth cooled to form a solid crust when water began accumulating in the atmosphere. The Moon formed shortly thereafter, 4.53 billion years ago.[25]

The current consensus model[26] for the formation of the Moon is the giant impact hypothesis, in which the Moon formed as a result of a Mars-sized object (sometimes called Theia) with about 10% of the Earth's mass[27] impacting the Earth in a glancing blow.[28] In this model, some of this object's mass would have merged with the Earth and a portion would have been ejected into space, but enough material would have been sent into orbit to form the Moon.

Outgassing and volcanic activity produced the primordial atmosphere. Condensing water vapor, augmented by ice and liquid water delivered by asteroids and the larger proto-planets, comets, and trans-Neptunian objects produced the oceans.[29] The newly formed Sun was only 70% of its present luminosity, yet evidence shows that the early oceans remained liquid—a contradiction dubbed the faint young Sun paradox. A combination of greenhouse gases and higher levels of solar activity served to raise the Earth's surface temperature, preventing the oceans from freezing over.[30] By 3.5 billion years ago, the Earth's magnetic field was established, which helped prevent the atmosphere from being stripped away by the solar wind.[31]

Two major models have been proposed for the rate of continental growth:[32] steady growth to the present-day[33] and rapid growth early in Earth history.[34] Current research shows that the second option is most likely, with rapid initial growth of continental crust[35] followed by a long-term steady continental area.[36][37][38] On time scales lasting hundreds of millions of years, the surface continually reshaped as continents formed and broke up. The continents migrated across the surface, occasionally combining to form a supercontinent. Roughly 750 million years ago (Ma), one of the earliest known supercontinents, Rodinia, began to break apart. The continents later recombined to form Pannotia, 600–540 Ma, then finally Pangaea, which broke apart 180 Ma.[39]

Evolution of life

At present, Earth provides the only example of an environment that has given rise to the evolution of life.[40] Highly energetic chemistry is believed to have produced a self-replicating molecule around 4 billion years ago and half a billion years later the last common ancestor of all life existed.[41] The development of photosynthesis allowed the Sun's energy to be harvested directly by life forms; the resultant oxygen accumulated in the atmosphere and formed a layer of ozone (a form of molecular oxygen [O3]) in the upper atmosphere. The incorporation of smaller cells within larger ones resulted in the development of complex cells called eukaryotes.[42] True multicellular organisms formed as cells within colonies became increasingly specialized. Aided by the absorption of harmful ultraviolet radiation by the ozone layer, life colonized the surface of Earth.[43]

Since the 1960s, it has been hypothesized that severe glacial action between 750 and 580 Ma, during the Neoproterozoic, covered much of the planet in a sheet of ice. This hypothesis has been termed "Snowball Earth", and is of particular interest because it preceded the Cambrian explosion, when multicellular life forms began to proliferate.[44]

Following the Cambrian explosion, about 535 Ma, there have been five major mass extinctions.[45] The most recent such event was 65 Ma, when an asteroid impact triggered the extinction of the (non-avian) dinosaurs and other large reptiles, but spared some small animals such as mammals, which then resembled shrews. Over the past 65 million years, mammalian life has diversified, and several million years ago, an African ape-like animal such as Orrorin tugenensis gained the ability to stand upright.[46] This enabled tool use and encouraged communication that provided the nutrition and stimulation needed for a larger brain. The development of agriculture, and then civilization, allowed humans to influence the Earth in a short time span as no other life form had,[47] affecting both the nature and quantity of other life forms.

The present pattern of ice ages began about 40 Ma and then intensified during the Pleistocene about 3 Ma. High-latitude regions have since undergone repeated cycles of glaciation and thaw, repeating every 40–100,000 years. The last continental glaciation ended 10,000 years ago.[48]

Future

14 billion year timeline showing Sun's present age at 4.6 billion years; from 6 billion years Sun gradually warming, becoming a red dwarf at 10 billion years, "soon" followed by its transformation into a white dwarf star
The life cycle of the Sun

The future of the planet is closely tied to that of the Sun. As a result of the steady accumulation of helium at the Sun's core, the star's total luminosity will slowly increase. The luminosity of the Sun will grow by 10% over the next 1.1 Gyr (1.1 billion years) and by 40% over the next 3.5 Gyr.[49] Climate models indicate that the rise in radiation reaching the Earth is likely to have dire consequences, including the loss of the planet's oceans.[50]

The Earth's increasing surface temperature will accelerate the inorganic CO2 cycle, reducing its concentration to levels lethally low for plants (10 ppm for C4 photosynthesis) in approximately 500 million[20] to 900 million years. The lack of vegetation will result in the loss of oxygen in the atmosphere, so animal life will become extinct within several million more years.[51] After another billion years all surface water will have disappeared[21] and the mean global temperature will reach 70 °C[51] (158 °F). The Earth is expected to be effectively habitable for about another 500 million years from that point,[20] although this may be extended up to 2.3 billion years if the nitrogen is removed from the atmosphere.[52] Even if the Sun were eternal and stable, the continued internal cooling of the Earth would result in a loss of much of its CO2 due to reduced volcanism,[53] and 35% of the water in the oceans would descend to the mantle due to reduced steam venting from mid-ocean ridges.[54]

The Sun, as part of its evolution, will become a red giant in about 5 Gyr. Models predict that the Sun will expand out to about 250 times its present radius, roughly 1 AU (150,000,000 km).[49][55] Earth's fate is less clear. As a red giant, the Sun will lose roughly 30% of its mass, so, without tidal effects, the Earth will move to an orbit 1.7 AU (250,000,000 km) from the Sun when the star reaches it maximum radius. The planet was therefore initially expected to escape envelopment by the expanded Sun's sparse outer atmosphere, though most, if not all, remaining life would have been destroyed by the Sun's increased luminosity (peaking at about 5000 times its present level).[49] However, a more recent simulation indicates that Earth's orbit will decay due to tidal effects and drag, causing it to enter the red giant Sun's atmosphere and be vaporized.[55]

Composition and structure

Earth is a terrestrial planet, meaning that it is a rocky body, rather than a gas giant like Jupiter. It is the largest of the four solar terrestrial planets in size and mass. Of these four planets, Earth also has the highest density, the highest surface gravity, the strongest magnetic field, and fastest rotation.[56] It also is the only terrestrial planet with active plate tectonics.[57]

Shape

Size comparison of inner planets (left to right): Mercury, Venus, Earth and Mars

The shape of the Earth is very close to that of an oblate spheroid, a sphere flattened along the axis from pole to pole such that there is a bulge around the equator.[58] This bulge results from the rotation of the Earth, and causes the diameter at the equator to be 43 km larger than the pole to pole diameter.[59] The average diameter of the reference spheroid is about 12,742 km, which is approximately 40,000 km/π, as the meter was originally defined as 1/10,000,000 of the distance from the equator to the North Pole through Paris, France.[60]

Local topography deviates from this idealized spheroid, though on a global scale, these deviations are very small: Earth has a tolerance of about one part in about 584, or 0.17%, from the reference spheroid, which is less than the 0.22% tolerance allowed in billiard balls.[61] The largest local deviations in the rocky surface of the Earth are Mount Everest (8848 m above local sea level) and the Mariana Trench (10,911 m below local sea level). Because of the equatorial bulge, the surface locations farthest from the center of the Earth are the summits of Mount Chimborazo in Ecuador and Huascarán in Peru.[62][63][64]

Chemical composition of the crust[65]
Compound Formula Composition
Continental Oceanic
silica SiO2 60.2% 48.6%
alumina Al2O3 15.2% 16.5%
lime CaO 5.5% 12.3%
magnesia MgO 3.1% 6.8%
iron(II) oxide FeO 3.8% 6.2%
sodium oxide Na2O 3.0% 2.6%
potassium oxide K2O 2.8% 0.4%
iron(III) oxide Fe2O3 2.5% 2.3%
water H2O 1.4% 1.1%
carbon dioxide CO2 1.2% 1.4%
titanium dioxide TiO2 0.7% 1.4%
phosphorus pentoxide P2O5 0.2% 0.3%
Total 99.6% 99.9%

Chemical composition

The mass of the Earth is approximately 5.98 × 1024 kg. It is composed mostly of iron (32.1%), oxygen (30.1%), silicon (15.1%), magnesium (13.9%), sulfur (2.9%), nickel (1.8%), calcium (1.5%), and aluminium (1.4%); with the remaining 1.2% consisting of trace amounts of other elements. Due to mass segregation, the core region is believed to be primarily composed of iron (88.8%), with smaller amounts of nickel (5.8%), sulfur (4.5%), and less than 1% trace elements.[66]

The geochemist F. W. Clarke calculated that a little more than 47% of the Earth's crust consists of oxygen. The more common rock constituents of the Earth's crust are nearly all oxides; chlorine, sulfur and fluorine are the only important exceptions to this and their total amount in any rock is usually much less than 1%. The principal oxides are silica, alumina, iron oxides, lime, magnesia, potash and soda. The silica functions principally as an acid, forming silicates, and all the commonest minerals of igneous rocks are of this nature. From a computation based on 1,672 analyses of all kinds of rocks, Clarke deduced that 99.22% were composed of 11 oxides (see the table at right). All the other constituents occur only in very small quantities.[67]

Internal structure

The interior of the Earth, like that of the other terrestrial planets, is divided into layers by their chemical or physical (rheological) properties. The outer layer of the Earth is a chemically distinct silicate solid crust, which is underlain by a highly viscous solid mantle. The crust is separated from the mantle by the Mohorovičić discontinuity, and the thickness of the crust varies: averaging 6 km under the oceans and 30–50 km on the continents. The crust and the cold, rigid, top of the upper mantle are collectively known as the lithosphere, and it is of the lithosphere that the tectonic plates are comprised. Beneath the lithosphere is the asthenosphere, a relatively low-viscosity layer on which the lithosphere rides. Important changes in crystal structure within the mantle occur at 410 and 660 kilometers below the surface, spanning a transition zone that separates the upper and lower mantle. Beneath the mantle, an extremely low viscosity liquid outer core lies above a solid inner core.[68] The inner core may rotate at a slightly higher angular velocity than the remainder of the planet, advancing by 0.1–0.5° per year.[69]

Geologic layers of the Earth[70]
Earth-crust-cutaway-english.svg

Earth cutaway from core to exosphere. Not to scale.
Depth[71]
km
Component Layer Density
g/cm3
0–60 Lithosphere[note 11]
0–35 Crust[note 12] 2.2–2.9
35–60 Upper mantle 3.4–4.4
  35–2890 Mantle 3.4–5.6
100–700 Asthenosphere
2890–5100 Outer core 9.9–12.2
5100–6378 Inner core 12.8–13.1

Heat

Earth's internal heat comes from a combination of residual heat from planetary accretion (about 20%) and heat produced through radioactive decay (80%).[72] The major heat-producing isotopes in the Earth are potassium-40, uranium-238, uranium-235, and thorium-232.[73] At the center of the planet, the temperature may be up to 7,000 K and the pressure could reach 360 GPa.[74] Because much of the heat is provided by radioactive decay, scientists believe that early in Earth history, before isotopes with short half-lives had been depleted, Earth's heat production would have been much higher. This extra heat production, twice present-day at approximately 3 billion years ago,[72] would have increased temperature gradients within the Earth, increasing the rates of mantle convection and plate tectonics, and allowing the production of igneous rocks such as komatiites that are not formed today.[75]

Present-day major heat-producing isotopes[76]
Isotope Heat release
W/kg isotope
Half-life

years
Mean mantle concentration
kg isotope/kg mantle
Heat release
W/kg mantle
238U 9.46 × 10−5 4.47 × 109 30.8 × 10−9 2.91 × 10−12
235U 5.69 × 10−4 7.04 × 108 0.22 × 10−9 1.25 × 10−13
232Th 2.64 × 10−5 1.40 × 1010 124 × 10−9 3.27 × 10−12
40K 2.92 × 10−5 1.25 × 109 36.9 × 10−9 1.08 × 10−12

Total heat loss from the Earth is 4.2 × 1013 watts.[77] A portion of the core's thermal energy is transported toward the crust by mantle plumes; a form of convection consisting of upwellings of higher-temperature rock. These plumes can produce hotspots and flood basalts.[78] More of the heat in the Earth is lost through plate tectonics, by mantle upwelling associated with mid-ocean ridges. The final major mode of heat loss is through conduction through the lithosphere, the majority of which occurs in the oceans because the crust there is much thinner than that of the continents.[77]

Tectonic plates

Earth's main plates[79]
Shows the extent and boundaries of tectonic plates, with superimposed outlines of the continents they support
Plate name Area
106 km2
African Plate[note 13] 78.0
Antarctic Plate 60.9
Indo-Australian Plate 47.2
Eurasian Plate 67.8
North American Plate 75.9
South American Plate 43.6
Pacific Plate 103.3

The mechanically rigid outer layer of the Earth, the lithosphere, is broken into pieces called tectonic plates. These plates are rigid segments that move in relation to one another at one of three types of plate boundaries: Convergent boundaries, at which two plates come together, Divergent boundaries, at which two plates are pulled apart, and Transform boundaries, in which two plates slide past one another laterally. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation can occur along these plate boundaries.[80] The tectonic plates ride on top of the asthenosphere, the solid but less-viscous part of the upper mantle that can flow and move along with the plates,[81] and their motion is strongly coupled with convection patterns inside the Earth's mantle.

As the tectonic plates migrate across the planet, the ocean floor is subducted under the leading edges of the plates at convergent boundaries. At the same time, the upwelling of mantle material at divergent boundaries creates mid-ocean ridges. The combination of these processes continually recycles the oceanic crust back into the mantle. Because of this recycling, most of the ocean floor is less than 100 million years in age. The oldest oceanic crust is located in the Western Pacific, and has an estimated age of about 200 million years.[82][83] By comparison, the oldest dated continental crust is 4030 million years old.[84]

Other notable plates include the Indian Plate, the Arabian Plate, the Caribbean Plate, the Nazca Plate off the west coast of South America and the Scotia Plate in the southern Atlantic Ocean. The Australian Plate fused with the Indian Plate between 50 and 55 million years ago. The fastest-moving plates are the oceanic plates, with the Cocos Plate advancing at a rate of 75 mm/yr[85] and the Pacific Plate moving 52–69 mm/yr. At the other extreme, the slowest-moving plate is the Eurasian Plate, progressing at a typical rate of about 21 mm/yr.[86]

Surface

The Earth's terrain varies greatly from place to place. About 70.8%[87] of the surface is covered by water, with much of the continental shelf below sea level. The submerged surface has mountainous features, including a globe-spanning mid-ocean ridge system, as well as undersea volcanoes,[59] oceanic trenches, submarine canyons, oceanic plateaus and abyssal plains. The remaining 29.2% not covered by water consists of mountains, deserts, plains, plateaus, and other geomorphologies.

The planetary surface undergoes reshaping over geological time periods because of tectonics and erosion. The surface features built up or deformed through plate tectonics are subject to steady weathering from precipitation, thermal cycles, and chemical effects. Glaciation, coastal erosion, the build-up of coral reefs, and large meteorite impacts[88] also act to reshape the landscape.

Present day Earth altimetry and bathymetry. Data from the National Geophysical Data Center's TerrainBase Digital Terrain Model.

The continental crust consists of lower density material such as the igneous rocks granite and andesite. Less common is basalt, a denser volcanic rock that is the primary constituent of the ocean floors.[89] Sedimentary rock is formed from the accumulation of sediment that becomes compacted together. Nearly 75% of the continental surfaces are covered by sedimentary rocks, although they form only about 5% of the crust.[90] The third form of rock material found on Earth is metamorphic rock, which is created from the transformation of pre-existing rock types through high pressures, high temperatures, or both. The most abundant silicate minerals on the Earth's surface include quartz, the feldspars, amphibole, mica, pyroxene and olivine.[91] Common carbonate minerals include calcite (found in limestone) and dolomite.[92]

The pedosphere is the outermost layer of the Earth that is composed of soil and subject to soil formation processes. It exists at the interface of the lithosphere, atmosphere, hydrosphere and biosphere. Currently the total arable land is 13.31% of the land surface, with only 4.71% supporting permanent crops.[10] Close to 40% of the Earth's land surface is presently used for cropland and pasture, or an estimated 1.3 × 107 km2 of cropland and 3.4 × 107 km2 of pastureland.[93]

The elevation of the land surface of the Earth varies from the low point of −418 m at the Dead Sea, to a 2005-estimated maximum altitude of 8,848 m at the top of Mount Everest. The mean height of land above sea level is 840 m.[94]

Hydrosphere

Elevation histogram of the surface of the Earth

The abundance of water on Earth's surface is a unique feature that distinguishes the "Blue Planet" from others in the Solar System. The Earth's hydrosphere consists chiefly of the oceans, but technically includes all water surfaces in the world, including inland seas, lakes, rivers, and underground waters down to a depth of 2,000 m. The deepest underwater location is Challenger Deep of the Mariana Trench in the Pacific Ocean with a depth of −10,911.4 m.[note 14][95]

The mass of the oceans is approximately 1.35 × 1018 metric tons, or about 1/4400 of the total mass of the Earth. The oceans cover an area of 361.8 × 106 km2 with a mean depth of 3,682 m, resulting in an estimated volume of 1.332 × 109 km3.[96] If all the land on Earth were spread evenly, water would rise to an altitude of more than 2.7 km.[note 15] About 97.5% of the water is saline, while the remaining 2.5% is fresh water. Most fresh water, about 68.7%, is currently ice.[97]

The average salinity of the Earth's oceans is about 35 grams of salt per kilogram of sea water (35 ‰).[98] Most of this salt was released from volcanic activity or extracted from cool, igneous rocks.[99] The oceans are also a reservoir of dissolved atmospheric gases, which are essential for the survival of many aquatic life forms.[100] Sea water has an important influence on the world's climate, with the oceans acting as a large heat reservoir.[101] Shifts in the oceanic temperature distribution can cause significant weather shifts, such as the El Niño-Southern Oscillation.[102]

Atmosphere

The atmospheric pressure on the surface of the Earth averages 101.325 kPa, with a scale height of about 8.5 km.[3] It is 78% nitrogen and 21% oxygen, with trace amounts of water vapor, carbon dioxide and other gaseous molecules. The height of the troposphere varies with latitude, ranging between 8 km at the poles to 17 km at the equator, with some variation resulting from weather and seasonal factors.[103]

Earth's biosphere has significantly altered its atmosphere. Oxygenic photosynthesis evolved 2.7 billion years ago, forming the primarily nitrogen-oxygen atmosphere of today. This change enabled the proliferation of aerobic organisms as well as the formation of the ozone layer which blocks ultraviolet solar radiation, permitting life on land. Other atmospheric functions important to life on Earth include transporting water vapor, providing useful gases, causing small meteors to burn up before they strike the surface, and moderating temperature.[104] This last phenomenon is known as the greenhouse effect: trace molecules within the atmosphere serve to capture thermal energy emitted from the ground, thereby raising the average temperature. Carbon dioxide, water vapor, methane and ozone are the primary greenhouse gases in the Earth's atmosphere. Without this heat-retention effect, the average surface temperature would be −18 °C and life would likely not exist.[87]

Weather and climate

Satellite cloud cover image of Earth using NASA's Moderate-Resolution Imaging Spectroradiometer.

The Earth's atmosphere has no definite boundary, slowly becoming thinner and fading into outer space. Three-quarters of the atmosphere's mass is contained within the first 11 km of the planet's surface. This lowest layer is called the troposphere. Energy from the Sun heats this layer, and the surface below, causing expansion of the air. This lower density air then rises, and is replaced by cooler, higher density air. The result is atmospheric circulation that drives the weather and climate through redistribution of heat energy.[105]

The primary atmospheric circulation bands consist of the trade winds in the equatorial region below 30° latitude and the westerlies in the mid-latitudes between 30° and 60°.[106] Ocean currents are also important factors in determining climate, particularly the thermohaline circulation that distributes heat energy from the equatorial oceans to the polar regions.[107]

Source regions of global air masses

Water vapor generated through surface evaporation is transported by circulatory patterns in the atmosphere. When atmospheric conditions permit an uplift of warm, humid air, this water condenses and settles to the surface as precipitation.[105] Most of the water is then transported to lower elevations by river systems and usually returned to the oceans or deposited into lakes. This water cycle is a vital mechanism for supporting life on land, and is a primary factor in the erosion of surface features over geological periods. Precipitation patterns vary widely, ranging from several meters of water per year to less than a millimeter. Atmospheric circulation, topological features and temperature differences determine the average precipitation that falls in each region.[108]

The amount of solar energy reaching the Earth's decreases with increasing latitude. At higher latitudes the sunlight reaches the surface at a lower angles and it must pass through thicker columns of the atmosphere. As a result, the mean annual air temperature at sea level decreases by about 0.4° C per per degree of latitude away from the equator.[109] The Earth can be sub-divided into specific latitudinal belts of approximately homogeneous climate. Ranging from the equator to the polar regions, these are the tropical (or equatorial), subtropical, temperate and polar climates.[110] Climate can also be classified based on the temperature and precipitation, with the climate regions characterized by fairly uniform air masses. The commonly used Köppen climate classification system (as modified by Wladimir Köppen's student Rudolph Geiger) has five broad groups (humid tropics, arid, humid middle latitudes, continental and cold polar), which are further divided into more specific subtypes.[106]

Upper atmosphere

This view from orbit shows the full Moon partially obscured and deformed by the Earth's atmosphere. NASA image.

Above the troposphere, the atmosphere is usually divided into the stratosphere, mesosphere, and thermosphere.[104] Each layer has a different lapse rate, defining the rate of change in temperature with height. Beyond these, the exosphere thins out into the magnetosphere, where the Earth's magnetic fields interact with the solar wind.[111] An important part of the atmosphere for life on Earth is the ozone layer, a component of the stratosphere that partially shields the surface from ultraviolet light. The Kármán line, defined as 100 km above the Earth's surface, is a working definition for the boundary between atmosphere and space.[112]

Thermal energy causes some of the molecules at the outer edge of the Earth's atmosphere have their velocity increased to the point where they can escape from the planet's gravity. This results in a slow but steady leakage of the atmosphere into space. Because unfixed hydrogen has a low molecular weight, it can achieve escape velocity more readily and it leaks into outer space at a greater rate than other gasses.[113] The leakage of hydrogen into space contributes to the pushing of the Earth from an initially reducing state to its current oxidizing one. Photosynthesis provided a source of free oxygen, but the loss of reducing agents such as hydrogen is believed to have been a necessary precondition for the widespread accumulation of oxygen in the atmosphere.[114] Hence the ability of hydrogen to escape from the Earth's atmosphere may have influenced the nature of life that developed on the planet.[115] In the current, oxygen-rich atmosphere most hydrogen is converted into water before it has an opportunity to escape. Instead, most of the hydrogen loss comes from the destruction of methane in the upper atmosphere.[116]

Magnetic field

Diagram: Earth shown as a circle; magnetic field lines shown as closed loops going from S to N poles
The Earth's magnetic field, which approximates a dipole

The Earth's magnetic field is shaped roughly as a magnetic dipole, with the poles currently located proximate to the planet's geographic poles. According to dynamo theory, the field is generated within the molten outer core region where heat creates convection motions of conducting materials, generating electric currents. These in turn produce the Earth's magnetic field. The convection movements in the core are chaotic; the magnetic poles drift and periodically change alignment. This results in field reversals at irregular intervals averaging a few times every million years. The most recent reversal occurred approximately 700,000 years ago.[117][118]

The field forms the magnetosphere, which deflects particles in the solar wind. The sunward edge of the bow shock is located at about 13 times the radius of the Earth. The collision between the magnetic field and the solar wind forms the Van Allen radiation belts, a pair of concentric, torus-shaped regions of energetic charged particles. When the plasma enters the Earth's atmosphere at the magnetic poles, it forms the aurora.[119]

Orbit and rotation

Rotation

Earth's axial tilt (or obliquity) and its relation to the rotation axis and plane of orbit.

Earth's rotation period relative to the Sun—its mean solar day—is 86,400 seconds of mean solar time. Each second is slightly longer than an SI second because Earth's solar day is now slightly longer than it was during the 19th century because of tidal acceleration.[120]

Earth's rotation period relative to the fixed stars, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86164.098903691 seconds of mean solar time (UT1), or 23h 56m 4.098903691s. [2][note 16] Earth's rotation period relative to the precessing or moving mean vernal equinox, misnamed its sidereal day, is 86164.09053083288 seconds of mean solar time (UT1) (23h 56m 4.09053083288s).[2] Thus the sidereal day is shorter than the stellar day by about 8.4 ms.[121] The length of the mean solar day in SI seconds is available from the IERS for the periods 1623–2005[122] and 1962–2005.[123]

Apart from meteors within the atmosphere and low-orbiting satellites, the main apparent motion of celestial bodies in the Earth's sky is to the west at a rate of 15°/h = 15'/min. For bodies near the celestial equator, this is equivalent to an apparent diameter of the Sun or Moon every two minutes; from the planet's surface, the apparent sizes of the Sun and the Moon are approximately the same.[124][125]

Orbit

Earth orbits the Sun at an average distance of about 150 million kilometers every 365.2564 mean solar days, or one sidereal year. From Earth, this gives an apparent movement of the Sun eastward with respect to the stars at a rate of about 1°/day, or a Sun or Moon diameter every 12 hours. Because of this motion, on average it takes 24 hours—a solar day—for Earth to complete a full rotation about its axis so that the Sun returns to the meridian. The orbital speed of the Earth averages about 30 km/s (108,000 km/h), which is fast enough to cover the planet's diameter (about 12,600 km) in seven minutes, and the distance to the Moon (384,000 km) in four hours.[3]

The Moon revolves with the Earth around a common barycenter every 27.32 days relative to the background stars. When combined with the Earth–Moon system's common revolution around the Sun, the period of the synodic month, from new moon to new moon, is 29.53 days. Viewed from the celestial north pole, the motion of Earth, the Moon and their axial rotations are all counter-clockwise. Viewed from a vantage point above the north poles of both the Sun and the Earth, the Earth appears to revolve in a counterclockwise direction about the Sun. The orbital and axial planes are not precisely aligned: Earth's axis is tilted some 23.5 degrees from the perpendicular to the Earth–Sun plane, and the Earth–Moon plane is tilted about 5 degrees against the Earth-Sun plane. Without this tilt, there would be an eclipse every two weeks, alternating between lunar eclipses and solar eclipses.[3][126]

The Hill sphere, or gravitational sphere of influence, of the Earth is about 1.5 Gm (or 1,500,000 kilometers) in radius.[127][note 17] This is maximum distance at which the Earth's gravitational influence is stronger than the more distant Sun and planets. Objects must orbit the Earth within this radius, or they can become unbound by the gravitational perturbation of the Sun.

Barred spiral galaxy
Illustration of the Milky Way Galaxy, showing the location of the Sun

Earth, along with the Solar System, is situated in the Milky Way galaxy, orbiting about 28,000 light years from the center of the galaxy. It is currently about 20 light years above the galaxy's equatorial plane in the Orion spiral arm.[128]

Axial tilt and seasons

Because of the axial tilt of the Earth, the amount of sunlight reaching any given point on the surface varies over the course of the year. This results in seasonal change in climate, with summer in the northern hemisphere occurring when the North Pole is pointing toward the Sun, and winter taking place when the pole is pointed away. During the summer, the day lasts longer and the Sun climbs higher in the sky. In winter, the climate becomes generally cooler and the days shorter. Above the Arctic Circle, an extreme case is reached where there is no daylight at all for part of the year—a polar night. In the southern hemisphere the situation is exactly reversed, with the South Pole oriented opposite the direction of the North Pole.

Black space with crescent Earth at lower left, crescent Moon at upper right, 30% of Earth's apparent diameter; five Earth diameters apparent space between; sunlit from right side
Earth and Moon from Mars, imaged by Mars Reconnaissance Orbiter. From space, the Earth can be seen to go through phases similar to the phases of the Moon.

By astronomical convention, the four seasons are determined by the solstices—the point in the orbit of maximum axial tilt toward or away from the Sun—and the equinoxes, when the direction of the tilt and the direction to the Sun are perpendicular. In the northern hemisphere, Winter Solstice occurs on about December 21, Summer Solstice is near June 21, Spring Equinox is around March 20 and Autumnal Equinox is about September 23. In the Southern hemisphere, the situation is reversed, with the Summer and Winter Solstices exchanged and the Spring and Autumnal Equinox dates switched.[129]

The angle of the Earth's tilt is relatively stable over long periods of time. However, the tilt does undergo nutation; a slight, irregular motion with a main period of 18.6 years.[130] The orientation (rather than the angle) of the Earth's axis also changes over time, precessing around in a complete circle over each 25,800 year cycle; this precession is the reason for the difference between a sidereal year and a tropical year. Both of these motions are caused by the varying attraction of the Sun and Moon on the Earth's equatorial bulge. From the perspective of the Earth, the poles also migrate a few meters across the surface. This polar motion has multiple, cyclical components, which collectively are termed quasiperiodic motion. In addition to an annual component to this motion, there is a 14-month cycle called the Chandler wobble. The rotational velocity of the Earth also varies in a phenomenon known as length of day variation.[131]

In modern times, Earth's perihelion occurs around January 3, and the aphelion around July 4. However, these dates change over time due to precession and other orbital factors, which follow cyclical patterns known as Milankovitch cycles. The changing Earth-Sun distance results in an increase of about 6.9%[132] in solar energy reaching the Earth at perihelion relative to aphelion. Since the southern hemisphere is tilted toward the Sun at about the same time that the Earth reaches the closest approach to the Sun, the southern hemisphere receives slightly more energy from the Sun than does the northern over the course of a year. However, this effect is much less significant than the total energy change due to the axial tilt, and most of the excess energy is absorbed by the higher proportion of water in the southern hemisphere.[133]

Moon

Characteristics
Diameter 3,474.8 km
Mass 7.349 × 1022 kg
Semi-major axis 384,400 km
Orbital period 27 d 7 h 43.7 m

The Moon is a relatively large, terrestrial, planet-like satellite, with a diameter about one-quarter of the Earth's. It is the largest moon in the Solar System relative to the size of its planet, although Charon is larger relative to the dwarf planet Pluto. The natural satellites orbiting other planets are called "moons" after Earth's Moon.

The gravitational attraction between the Earth and Moon causes tides on Earth. The same effect on the Moon has led to its tidal locking: its rotation period is the same as the time it takes to orbit the Earth. As a result, it always presents the same face to the planet. As the Moon orbits Earth, different parts of its face are illuminated by the Sun, leading to the lunar phases; the dark part of the face is separated from the light part by the solar terminator.

Because of their tidal interaction, the Moon recedes from Earth at the rate of approximately 38 mm a year. Over millions of years, these tiny modifications—and the lengthening of Earth's day by about 23 µs a year—add up to significant changes.[134] During the Devonian period, for example, (approximately 410 million years ago) there were 400 days in a year, with each day lasting 21.8 hours.[135]

Details of the Earth-Moon system. Besides the radius of each object, the radius to the Earth-Moon barycenter is shown. Photos from NASA. Data from NASA. The Moon's axis is located by Cassini's third law.

The Moon may have dramatically affected the development of life by moderating the planet's climate. Paleontological evidence and computer simulations show that Earth's axial tilt is stabilized by tidal interactions with the Moon.[136] Some theorists believe that without this stabilization against the torques applied by the Sun and planets to the Earth's equatorial bulge, the rotational axis might be chaotically unstable, exhibiting chaotic changes over millions of years, as appears to be the case for Mars.[137] If Earth's axis of rotation were to approach the plane of the ecliptic, extremely severe weather could result from the resulting extreme seasonal differences. One pole would be pointed directly toward the Sun during summer and directly away during winter. Planetary scientists who have studied the effect claim that this might kill all large animal and higher plant life.[138] However, this is a controversial subject, and further studies of Mars—whose rotation period and axial tilt are similar to those of Earth, but which lacks a large moon or liquid core—may settle the matter.

Viewed from Earth, the Moon is just far enough away to have very nearly the same apparent-sized disk as the Sun. The angular size (or solid angle) of these two bodies match because, although the Sun's diameter is about 400 times as large as the Moon's, it is also 400 times more distant.[125] This allows total and annular solar eclipses to occur on Earth.

The most widely accepted theory of the Moon's origin, the giant impact theory, states that it formed from the collision of a Mars-size protoplanet called Theia with the early Earth. This hypothesis explains (among other things) the Moon's relative lack of iron and volatile elements, and the fact that its composition is nearly identical to that of the Earth's crust.[139]

Earth has at least two co-orbital asteroids, 3753 Cruithne and 2002 AA29.[140]

A scale representation of the relative sizes of, and average distance between, Earth and Moon

Habitability

A range of theoretical habitable zones with stars of different mass (our Solar System at center). Scale is logarithmic, and planet sizes are not to scale.

A planet that can sustain life is termed habitable, even if life did not originate there. The Earth provides the (currently understood) requisite conditions of liquid water, an environment where complex organic molecules can assemble, and sufficient energy to sustain metabolism.[141] The distance of the Earth from the Sun, as well as its orbital eccentricity, rate of rotation, axial tilt, geological history, sustaining atmosphere and protective magnetic field all contribute to the conditions believed necessary to originate and sustain life on this planet.[142]

Biosphere

The planet's life forms are sometimes said to form a "biosphere". This biosphere is generally believed to have begun evolving about 3.5 billion years ago. Earth is the only place in the universe where life is known to exist. Some scientists believe that Earth-like biospheres might be rare.[143]

The biosphere is divided into a number of biomes, inhabited by broadly similar plants and animals. On land, biomes are separated primarily by differences in latitude, height above sea level and humidity. Terrestrial biomes lying within the Arctic or Antarctic Circles, at high altitudes or in extremely arid areas are relatively barren of plant and animal life; species diversity reaches a peak in humid lowlands at equatorial latitudes.[144]

Natural resources and land use

The Earth provides resources that are exploitable by humans for useful purposes. Some of these are non-renewable resources, such as mineral fuels, that are difficult to replenish on a short time scale.

Large deposits of fossil fuels are obtained from the Earth's crust, consisting of coal, petroleum, natural gas and methane clathrate. These deposits are used by humans both for energy production and as feedstock for chemical production. Mineral ore bodies have also been formed in Earth's crust through a process of Ore genesis, resulting from actions of erosion and plate tectonics.[145] These bodies form concentrated sources for many metals and other useful elements.

The Earth's biosphere produces many useful biological products for humans, including (but far from limited to) food, wood, pharmaceuticals, oxygen, and the recycling of many organic wastes. The land-based ecosystem depends upon topsoil and fresh water, and the oceanic ecosystem depends upon dissolved nutrients washed down from the land.[146] Humans also live on the land by using building materials to construct shelters. In 1993, human use of land is approximately:

Land use Arable land Permanent crops Permanent pastures Forests and woodland Urban areas Other
Percentage 13.13%[10] 4.71%[10] 26% 32% 1.5% 30%

The estimated amount of irrigated land in 1993 was 2,481,250 km2.[10]

Natural and environmental hazards

Large areas are subject to extreme weather such as tropical cyclones, hurricanes, or typhoons that dominate life in those areas. Many places are subject to earthquakes, landslides, tsunamis, volcanic eruptions, tornadoes, sinkholes, blizzards, floods, droughts, and other calamities and disasters.

Many localized areas are subject to human-made pollution of the air and water, acid rain and toxic substances, loss of vegetation (overgrazing, deforestation, desertification), loss of wildlife, species extinction, soil degradation, soil depletion, erosion, and introduction of invasive species.

According to the United Nations, a scientific consensus exists linking human activities to global warming due to industrial carbon dioxide emissions. This is predicted to produce changes such as the melting of glaciers and ice sheets, more extreme temperature ranges, significant changes in weather and a global rise in average sea levels.[147]

Human geography

About this image

Cartography, the study and practice of map making, and vicariously geography, have historically been the disciplines devoted to depicting the Earth. Surveying, the determination of locations and distances, and to a lesser extent navigation, the determination of position and direction, have developed alongside cartography and geography, providing and suitably quantifying the requisite information.

Earth has approximately 6,803,000,000 human inhabitants as of December 12, 2009.[148] Projections indicate that the world's human population will reach seven billion in 2013 and 9.2 billion in 2050.[149] Most of the growth is expected to take place in developing nations. Human population density varies widely around the world, but a majority live in Asia. By 2020, 60% of the world's population is expected to be living in urban, rather than rural, areas.[150]

It is estimated that only one-eighth of the surface of the Earth is suitable for humans to live on—three-quarters is covered by oceans, and half of the land area is either desert (14%),[151] high mountains (27%),[152] or other less suitable terrain. The northernmost permanent settlement in the world is Alert, on Ellesmere Island in Nunavut, Canada.[153] (82°28′N) The southernmost is the Amundsen-Scott South Pole Station, in Antarctica, almost exactly at the South Pole. (90°S)

The Earth at night, a composite of DMSP/OLS ground illumination data on a simulated night-time image of the world. This image is not photographic and many features are brighter than they would appear to a direct observer.

Independent sovereign nations claim the planet's entire land surface, except for some parts of Antarctica and the odd unclaimed area of Bir Tawil between Egypt and Sudan. As of 2007 there are 201 sovereign states, including the 192 United Nations member states. In addition, there are 59 dependent territories, and a number of autonomous areas, territories under dispute and other entities.[10] Historically, Earth has never had a sovereign government with authority over the entire globe, although a number of nation-states have striven for world domination and failed.[154]

The United Nations is a worldwide intergovernmental organization that was created with the goal of intervening in the disputes between nations, thereby avoiding armed conflict.[155] It is not, however, a world government. The U.N. serves primarily as a forum for international diplomacy and international law. When the consensus of the membership permits, it provides a mechanism for armed intervention.[156]

The first human to orbit the Earth was Yuri Gagarin on April 12, 1961.[157] In total, about 400 people visited outer space and reached Earth orbit as of 2004, and, of these, twelve have walked on the Moon.[158][159][160] Normally the only humans in space are those on the International Space Station. The station's crew, currently six people, is usually replaced every six months.[161] The furthest humans have travelled from Earth is 400,171 km, achieved during the 1970 Apollo 13 mission.[162]

Cultural viewpoint

The first photograph ever taken by astronauts of an "Earthrise", from Apollo 8

The name "Earth" derives from the Anglo-Saxon word erda, which means ground or soil, and is related to the German word erde. It became eorthe later, and then erthe in Middle English.[163] The standard astronomical symbol of the Earth consists of a cross circumscribed by a circle.[164]

Unlike the rest of the planets in the Solar System, mankind did not perceive the Earth as a planet until the 16th century.[165] Earth has often been personified as a deity, in particular a goddess. In many cultures the mother goddess is also portrayed as a fertility deity. Creation myths in many religions recall a story involving the creation of the Earth by a supernatural deity or deities. A variety of religious groups, often associated with fundamentalist branches of Protestantism[166] or Islam,[167] assert that their interpretations of these creation myths in sacred texts are literal truth and should be considered alongside or replace conventional scientific accounts of the formation of the Earth and the origin and development of life.[168] Such assertions are opposed by the scientific community[169][170] and by other religious groups.[171][172][173] A prominent example is the creation-evolution controversy.

In the past there were varying levels of belief in a flat Earth,[174] but this was displaced by the concept of a spherical Earth due to observation and circumnavigation.[175] The human perspective regarding the Earth has changed following the advent of spaceflight, and the biosphere is now widely viewed from a globally integrated perspective.[176][177] This is reflected in a growing environmental movement that is concerned about humankind's effects on the planet.[178]

See also

Notes

  1. All astronomical quantities vary, both secularly and periodically. The quantities given are the values at the instant J2000.0 of the secular variation, ignoring all periodic variations.
  2. 2.0 2.1 aphelion = a × (1 + e); perihelion = a × (1 - e), where a is the semi-major axis and e is the eccentricity.
  3. The reference lists the longitude of the ascending node as -11.26064°, which is equivalent to 348.73936° by the fact that any angle is equal to itself plus 360°.
  4. The reference lists the longitude of perihelion, which is the sum of the longitude of the ascending node and the argument of perihelion. That is, 114.20783° + (-11.26064°) = 102.94719°.
  5. Due to natural fluctuations, ambiguities surrounding ice shelves, and mapping conventions for vertical datums, exact values for land and ocean coverage are not meaningful. Based on data from the Vector Map and Global Landcover datasets, extreme values for coverage of lakes and streams are 0.6% and 1.0% of the earth's surface. The ice shields of Antarctica and Greenland are counted as land, even though much of the rock which supports them lies below sea level.
  6. Blue Planet is used as the title of several films Blue Planet and The Blue Planet, in the Life issue The Incredible Year '68 featuring the Earthrise photo with lines from poet James Dickey Behold/The blue planet steeped in its dream/Of reality, and in the title of the European Space Agency bulletin report Exploring the water cycle of the 'Blue Planet'
  7. By International Astronomical Union convention, the term terra is used only for naming extensive land masses on celestial bodies other than the Earth. Cf. Blue, Jennifer (2007-07-05). "Descriptor Terms (Feature Types)". Gazetteer of Planetary Nomenclature. USGS. http://planetarynames.wr.usgs.gov/jsp/append5.jsp. Retrieved 2007-07-05. 
  8. Other planets in the Solar System are either too hot or too cold to support liquid water. However, it is confirmed to have existed on the surface of Mars in the past, and may still appear today. See:
  9. As of 2007, water vapor has been detected in the atmosphere of only one extrasolar planet, and it is a gas giant. See: Tinetti, G.; Vidal-Madjar, A.; Liang, M.C.; Beaulieu, J. P.; Yung, Y.; Carey, S.; Barber, R. J.; Tennyson, J.; Ribas, I (July 2007). "Water vapour in the atmosphere of a transiting extrasolar planet". Nature 448 (7150): 169–171. doi:10.1038/nature06002. PMID 17625559. http://www.nature.com/nature/journal/v448/n7150/abs/nature06002.html. 
  10. The number of solar days is one less than the number of sidereal days because the orbital motion of the Earth about the Sun results in one additional revolution of the planet about its axis.
  11. Locally varies between 5 and 200 km.
  12. Locally varies between 5 and 70 km.
  13. Including the Somali Plate, which is currently in the process of formation out of the African Plate. See: Chorowicz, Jean (October 2005). "The East African rift system". Journal of African Earth Sciences 43 (1–3): 379–410. doi:10.1016/j.jafrearsci.2005.07.019. 
  14. This is the measurement taken by the vessel Kaikō in March 1995 and is believed to be the most accurate measurement to date. See the Challenger Deep article for more details.
  15. The total surface area of the Earth is 5.1 × 108 km2. To first approximation, the average depth would be the ratio of the two, or 2.7 km.
  16. Aoki, the ultimate source of these figures, uses the term "seconds of UT1" instead of "seconds of mean solar time".—Aoki, S. (1982). "The new definition of universal time". Astronomy and Astrophysics 105 (2): 359–361. http://adsabs.harvard.edu/abs/1982A&A...105..359A. Retrieved 2008-09-23. 
  17. For the Earth, the Hill radius is
    \begin{smallmatrix} R_H = a\left ( \frac{m}{3M} \right )^{\frac{1}{3}} \end{smallmatrix},
    where m is the mass of the Earth, a is an Astronomical Unit, and M is the mass of the Sun. So the radius in A.U. is about: \begin{smallmatrix} \left ( \frac{1}{3 \cdot 332,946} \right )^{\frac{1}{3}} = 0.01 \end{smallmatrix}.

References

  1. 1.0 1.1 Standish, E. Myles; Williams, James C. "Orbital Ephemerides of the Sun, Moon, and Planets" (PDF). International Astronomical Union Commission 4: (Ephemerides). http://iau-comm4.jpl.nasa.gov/XSChap8.pdf. Retrieved 2010-04-03.  See table 8.10.2. Calculation based upon 1 AU = 149,597,870,700(3) m.
  2. 2.0 2.1 2.2 2.3 Staff (2007-08-07). "Useful Constants". International Earth Rotation and Reference Systems Service (IERS). http://hpiers.obspm.fr/eop-pc/models/constants.html. Retrieved 2008-09-23. 
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 3.11 Williams, David R. (2004-09-01). "Earth Fact Sheet". NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html. Retrieved 2010-08-09. 
  4. Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities. Springer. p. 294. ISBN 0387987460. http://books.google.com/?id=w8PK2XFLLH8C&pg=PA294. 
  5. Various (2000). David R. Lide. ed. Handbook of Chemistry and Physics (81st ed.). CRC. ISBN 0849304814. 
  6. 6.0 6.1 IERS Working Groups (2003). "General Definitions and Numerical Standards". In McCarthy, Dennis D.; Petit, Gérard. IERS Technical Note No. 32. U.S. Naval Observatory and Bureau International des Poids et Mesures. http://www.iers.org/MainDisp.csl?pid=46-25776. Retrieved 2008-08-03. 
  7. Cazenave, Anny (1995). "Geoid, Topography and Distribution of Landforms". In Ahrens, Thomas J (PDF). Global earth physics a handbook of physical constants. Washington, DC: American Geophysical Union. ISBN 0-87590-851-9. Archived from the original on 2006-10-16. http://web.archive.org/web/20061016024803/http://www.agu.org/reference/gephys/5_cazenave.pdf. Retrieved 2008-08-03. 
  8. 8.0 8.1 Rosenberg, Matt. "What is the circumference of the earth?". About.com. http://geography.about.com/library/faq/blqzcircumference.htm. Retrieved 2010-04-22. 
  9. Pidwirny, Michael (2006-02-02). Surface area of our planet covered by oceans and continents.(Table 8o-1). University of British Columbia, Okanagan. http://www.physicalgeography.net/fundamentals/8o.html. Retrieved 2007-11-26. 
  10. 10.0 10.1 10.2 10.3 10.4 10.5 Staff (2008-07-24). "World". The World Factbook. Central Intelligence Agency. https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html. Retrieved 2008-08-05. 
  11. Yoder, Charles F. (1995). T. J. Ahrens. ed. Global Earth Physics: A Handbook of Physical Constants. Washington: American Geophysical Union. p. 12. ISBN 0875908519. Archived from the original on 2007-03-08. http://web.archive.org/web/20070308141029/http://www.agu.org/reference/gephys.html. Retrieved 2007-03-17. 
  12. Allen, Clabon Walter; Cox, Arthur N. (2000). Allen's Astrophysical Quantities. Springer. p. 296. ISBN 0387987460. http://books.google.com/?id=w8PK2XFLLH8C&pg=PA296. Retrieved 2010-08-17. 
  13. Arthur N. Cox, ed (2000). Allen's Astrophysical Quantities (4th ed.). New York: AIP Press. p. 244. ISBN 0-387-98746-0. http://books.google.com/?id=w8PK2XFLLH8C&pg=PA244. Retrieved 2010-08-17. 
  14. "World: Lowest Temperature". WMO Weather and Climate Extremes Archive. Arizona State University. http://wmo.asu.edu/world-lowest-temperature. Retrieved 2010-08-07. 
  15. Kinver, Mark (December 10, 2009). "Global average temperature may hit record level in 2010". BBC Online. http://news.bbc.co.uk/2/hi/science/nature/8406839.stm. Retrieved 2010-04-22. 
  16. "World: Highest Temperature". WMO Weather and Climate Extremes Archive. Arizona State University. http://wmo.asu.edu/world-highest-temperature. Retrieved 2010-08-07. 
  17. May, Robert M. (1988). "How many species are there on earth?". Science 241 (4872): 1441–1449. doi:10.1126/science.241.4872.1441. PMID 17790039. http://adsabs.harvard.edu/abs/1988Sci...241.1441M. Retrieved 2007-08-14. 
  18. 18.0 18.1 See:
  19. Harrison, Roy M.; Hester, Ronald E. (2002). Causes and Environmental Implications of Increased UV-B Radiation. Royal Society of Chemistry. ISBN 0854042652. 
  20. 20.0 20.1 20.2 Britt, Robert (2000-02-25). "Freeze, Fry or Dry: How Long Has the Earth Got?". http://www.space.com/scienceastronomy/solarsystem/death_of_earth_000224.html. 
  21. 21.0 21.1 Carrington, Damian (2000-02-21). "Date set for desert Earth". BBC News. http://news.bbc.co.uk/1/hi/sci/tech/specials/washington_2000/649913.stm. Retrieved 2007-03-31. 
  22. Yoder, Charles F. (1995). T. J. Ahrens. ed. Global Earth Physics: A Handbook of Physical Constants. Washington: American Geophysical Union. p. 8. ISBN 0875908519. http://www.agu.org/reference/gephys.html. Retrieved 2007-03-17. 
  23. Bowring, S.; Housh, T. (1995). "The Earth's early evolution". Science 269 (5230): 1535. doi:10.1126/science.7667634. PMID 7667634. 
  24. Yin, Qingzhu; Jacobsen, S. B.; Yamashita, K.; Blichert-Toft, J.; Télouk, P.; Albarède, F. (2002). "A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites". Nature 418 (6901): 949–952. doi:10.1038/nature00995. PMID 12198540. 
  25. Kleine, Thorsten; Palme, Herbert; Mezger, Klaus; Halliday, Alex N. (2005-11-24). "Hf-W Chronometry of Lunar Metals and the Age and Early Differentiation of the Moon". Science 310 (5754): 1671–1674. doi:10.1126/science.1118842. PMID 16308422. 
  26. Reilly, Michael (October 22, 2009). "Controversial Moon Origin Theory Rewrites History". http://news.discovery.com/space/moon-earth-formation.html. Retrieved 2010-01-30. 
  27. Canup, R. M.; Asphaug, E. (Fall Meeting 2001). "An impact origin of the Earth-Moon system". Abstract #U51A-02. American Geophysical Union. http://adsabs.harvard.edu/abs/2001AGUFM.U51A..02C. Retrieved 2007-03-10. 
  28. Canup, R.; Asphaug, E. (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature 412 (6848): 708–712. doi:10.1038/35089010. PMID 11507633. http://www.nature.com/nature/journal/v412/n6848/abs/412708a0.html. 
  29. Morbidelli, A.; Chambers, J.; Lunine, J. I.; Petit, J. M.; Robert, F.; Valsecchi, G. B.; Cyr, K. E. (2000). "Source regions and time scales for the delivery of water to Earth". Meteoritics & Planetary Science 35 (6): 1309–1320. doi:10.1111/j.1945-5100.2000.tb01518.x. http://adsabs.harvard.edu/abs/2000M&PS...35.1309M. Retrieved 2007-03-06. 
  30. Guinan, E. F.; Ribas, I. "Our Changing Sun: The Role of Solar Nuclear Evolution and Magnetic Activity on Earth's Atmosphere and Climate". In Benjamin Montesinos, Alvaro Gimenez and Edward F. Guinan. ASP Conference Proceedings: The Evolving Sun and its Influence on Planetary Environments. San Francisco: Astronomical Society of the Pacific. ISBN 1-58381-109-5. http://adsabs.harvard.edu/abs/2002ASPC..269...85G. Retrieved 2009-07-27. 
  31. Staff (March 4, 2010). "Oldest measurement of Earth's magnetic field reveals battle between Sun and Earth for our atmosphere". Physorg.news. http://www.physorg.com/news186922627.html. Retrieved 2010-03-27. 
  32. Rogers, John James William; Santosh, M. (2004). Continents and Supercontinents. Oxford University Press US. p. 48. ISBN 0195165896. 
  33. Hurley, P. M. (Jun 1969). "Pre-drift continental nuclei". Science 164 (3885): 1229–1242. doi:10.1126/science.164.3885.1229. ISSN 0036-8075. PMID 17772560. 
  34. Armstrong, R. L. (1968). "A model for the evolution of strontium and lead isotopes in a dynamic earth". Reviews of Geophysics 6: 175–199. doi:10.1029/RG006i002p00175. 
  35. De Smet, J. (2000). "Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle". Tectonophysics 322: 19. doi:10.1016/S0040-1951(00)00055-X. 
  36. Harrison, T.; Blichert-Toft, J.; Müller, W.; Albarede, F.; Holden, P.; Mojzsis, S. (December 2005). "Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 ga". Science 310 (5756): 1947–50. doi:10.1126/science.1117926. PMID 16293721. 
  37. Hong, D. (2004). "Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt". Journal of Asian Earth Sciences 23: 799. doi:10.1016/S1367-9120(03)00134-2. 
  38. Armstrong, R. L. (1991). "The persistent myth of crustal growth". Australian Journal of Earth Sciences 38: 613–630. doi:10.1080/08120099108727995. 
  39. Murphy, J. B.; Nance, R. D. (1965). "How do supercontinents assemble?". American Scientist 92: 324–33. doi:10.1511/2004.4.324. http://scienceweek.com/2004/sa040730-5.htm. Retrieved 2007-03-05. 
  40. Purves, William Kirkwood; Sadava, David; Orians, Gordon H.; Heller, Craig (2001). Life, the Science of Biology: The Science of Biology. Macmillan. p. 455. ISBN 0716738732. 
  41. Doolittle, W. Ford; Worm, Boris (February 2000). "Uprooting the tree of life". Scientific American 282 (6): 90–95. doi:10.1038/nature03582. 
  42. Berkner, L. V.; Marshall, L. C. (1965). "On the Origin and Rise of Oxygen Concentration in the Earth's Atmosphere". Journal of Atmospheric Sciences 22 (3): 225–261. doi:10.1175/1520-0469(1965)022<0225:OTOARO>2.0.CO;2. http://adsabs.harvard.edu/abs/1965JAtS...22..225B. Retrieved 2007-03-05. 
  43. Burton, Kathleen (2002-11-29). "Astrobiologists Find Evidence of Early Life on Land". NASA. http://www.nasa.gov/centers/ames/news/releases/2000/00_79AR.html. Retrieved 2007-03-05. 
  44. Kirschvink, J. L. (1992). Schopf, J.W.; Klein, C. and Des Maris, D. ed. Late Proterozoic low-latitude global glaciation: the Snowball Earth. The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press. pp. 51–52. ISBN 0521366151. 
  45. Raup, D. M.; Sepkoski, J. J. (1982). "Mass Extinctions in the Marine Fossil Record". Science 215 (4539): 1501–1503. doi:10.1126/science.215.4539.1501. PMID 17788674. http://adsabs.harvard.edu/abs/1982Sci...215.1501R. Retrieved 2007-03-05. 
  46. Gould, Stephan J. (October 1994). "The Evolution of Life on Earth". Scientific American. http://brembs.net/gould.html. Retrieved 2007-03-05. 
  47. Wilkinson, B. H.; McElroy, B. J. (2007). "The impact of humans on continental erosion and sedimentation". Bulletin of the Geological Society of America 119 (1–2): 140–156. doi:10.1130/B25899.1. http://bulletin.geoscienceworld.org/cgi/content/abstract/119/1-2/140. Retrieved 2007-04-22. 
  48. Staff. "Paleoclimatology – The Study of Ancient Climates". Page Paleontology Science Center. http://www.lakepowell.net/sciencecenter/paleoclimate.htm. Retrieved 2007-03-02. 
  49. 49.0 49.1 49.2 Sackmann, I.-J.; Boothroyd, A. I.; Kraemer, K. E. (1993). "Our Sun. III. Present and Future" (PDF). Astrophysical Journal 418: 457–468. doi:10.1086/173407. Bibcode: 1993ApJ...418..457S. http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1993ApJ...418..457S&data_type=PDF_HIGH&whole_paper=YES&type=PRINTER&filetype=.pdf. Retrieved 2008-07-08. 
  50. Kasting, J.F. (1988). "Runaway and Moist Greenhouse Atmospheres and the Evolution of Earth and Venus". Icarus 74: 472–494. doi:10.1016/0019-1035(88)90116-9. PMID 11538226. http://adsabs.harvard.edu/abs/1988Icar...74..472K. Retrieved 2007-03-31. 
  51. 51.0 51.1 Ward, Peter D.; Brownlee, Donald (2002). The Life and Death of Planet Earth: How the New Science of Astrobiology Charts the Ultimate Fate of Our World. New York: Times Books, Henry Holt and Company. ISBN 0-8050-6781-7. 
  52. Li, King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Yuk L. (2009). "Atmospheric Pressure as a Natural Climate Regulator for a Terrestrial Planet with a Biosphere". Proceedings of the National Academy of Sciences 1–6 (24): 9576–9579. doi:10.1073/pnas.0809436106. PMID 19487662. PMC 2701016. http://www.gps.caltech.edu/~kfl/paper/Li_PNAS2009.pdf. Retrieved 2009-07-19. 
  53. Guillemot, H.; Greffoz, V. (March 2002). "Ce que sera la fin du monde" (in French). Science et Vie N° 1014. 
  54. Bounama, Christine (2001). "The fate of Earth's ocean". Hydrology and Earth System Sciences (Germany: Potsdam Institute for Climate Impact Research) 5 (4): 569–575. doi:10.5194/hess-5-569-2001. http://www.hydrol-earth-syst-sci.net/5/569/2001/hess-5-569-2001.pdf. Retrieved 2009-07-03. 
  55. 55.0 55.1 Schröder, K.-P.; Connon Smith, Robert (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society 386: 155. doi:10.1111/j.1365-2966.2008.13022.x. arXiv:0801.4031. 
    See also Palmer, Jason (2008-02-22). "Hope dims that Earth will survive Sun's death". NewScientist.com news service. http://space.newscientist.com/article/dn13369-hope-dims-that-earth-will-survive-suns-death.html?feedId=online-news_rss20. Retrieved 2008-03-24. 
  56. Stern, David P. (2001-11-25). "Planetary Magnetism". NASA. http://astrogeology.usgs.gov/HotTopics/index.php?/archives/147-Names-for-the-Columbia-astronauts-provisionally-approved.html. Retrieved 2007-04-01. 
  57. Tackley, Paul J. (2000-06-16). "Mantle Convection and Plate Tectonics: Toward an Integrated Physical and Chemical Theory". Science 288 (5473): 2002–2007. doi:10.1126/science.288.5473.2002. PMID 10856206. 
  58. Milbert, D. G.; Smith, D. A. "Converting GPS Height into NAVD88 Elevation with the GEOID96 Geoid Height Model". National Geodetic Survey, NOAA. http://www.ngs.noaa.gov/PUBS_LIB/gislis96.html. Retrieved 2007-03-07. 
  59. 59.0 59.1 Sandwell, D. T.; Smith, W. H. F. (2006-07-07). "Exploring the Ocean Basins with Satellite Altimeter Data". NOAA/NGDC. http://www.ngdc.noaa.gov/mgg/bathymetry/predicted/explore.HTML. Retrieved 2007-04-21. 
  60. Mohr, P.J.; Taylor, B.N. (October 2000). "Unit of length (meter)". NIST Reference on Constants, Units, and Uncertainty. NIST Physics Laboratory. http://physics.nist.gov/cuu/Units/meter.html. Retrieved 2007-04-23. 
  61. Staff (November 2001). "WPA Tournament Table & Equipment Specifications". World Pool-Billiards Association. http://www.wpa-pool.com/index.asp?content=rules_spec. Retrieved 2007-03-10. 
  62. Senne, Joseph H. (2000). "Did Edmund Hillary Climb the Wrong Mountain". Professional Surveyor 20 (5): 16–21. 
  63. Sharp, David (2005-03-05). "Chimborazo and the old kilogram". The Lancet 365 (9462): 831–832. doi:10.1016/S0140-6736(05)71021-7. 
  64. "Tall Tales about Highest Peaks". Australian Broadcasting Corporation. http://www.abc.net.au/science/k2/moments/s1086384.htm. Retrieved 2008-12-29. 
  65. Brown, Geoff C.; Mussett, Alan E. (1981). The Inaccessible Earth (2nd ed.). Taylor & Francis. p. 166. ISBN 0045500282.  Note: After Ronov and Yaroshevsky (1969).
  66. Morgan, J. W.; Anders, E. (1980). "Chemical composition of Earth, Venus, and Mercury". Proceedings of the National Academy of Science 71 (12): 6973–6977. doi:10.1073/pnas.77.12.6973. PMID 16592930. PMC 350422. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=350422. Retrieved 2007-02-04. 
  67.  This article incorporates text from a publication now in the public domainChisholm, Hugh, ed (1911). "Petrology". Encyclopædia Britannica (Eleventh ed.). Cambridge University Press. 
  68. Tanimoto, Toshiro (1995). Thomas J. Ahrens. ed (PDF). Crustal Structure of the Earth. Washington, DC: American Geophysical Union. ISBN 0-87590-851-9. Archived from the original on 2006-10-16. http://web.archive.org/web/20061016194153/http://www.agu.org/reference/gephys/15_tanimoto.pdf. Retrieved 2007-02-03. 
  69. Kerr, Richard A. (2005-09-26). "Earth's Inner Core Is Running a Tad Faster Than the Rest of the Planet". Science 309 (5739): 1313. doi:10.1126/science.309.5739.1313a. PMID 16123276. 
  70. Jordan, T. H. (1979). "Structural Geology of the Earth's Interior". Proceedings National Academy of Science 76 (9): 4192–4200. doi:10.1073/pnas.76.9.4192. PMID 16592703. PMC 411539. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=411539. Retrieved 2007-03-24. 
  71. Robertson, Eugene C. (2001-07-26). "The Interior of the Earth". USGS. http://pubs.usgs.gov/gip/interior/. Retrieved 2007-03-24. 
  72. 72.0 72.1 Turcotte, D. L.; Schubert, G. (2002). "4". Geodynamics (2 ed.). Cambridge, England, UK: Cambridge University Press. pp. 136–137. ISBN 978-0-521-66624-4. 
  73. Sanders, Robert (2003-12-10). "Radioactive potassium may be major heat source in Earth's core". UC Berkeley News. http://www.berkeley.edu/news/media/releases/2003/12/10_heat.shtml. Retrieved 2007-02-28. 
  74. Alfè, D.; Gillan, M. J.; Vocadlo, L.; Brodholt, J; Price, G. D. (2002). "The ab initio simulation of the Earth's core" (PDF). Philosophical Transaction of the Royal Society of London 360 (1795): 1227–1244. http://chianti.geol.ucl.ac.uk/~dario/pubblicazioni/PTRSA2002.pdf. Retrieved 2007-02-28. 
  75. Vlaar, N; =Vankeken, P.; Vandenberg, A. (1994). "Cooling of the earth in the Archaean: Consequences of pressure-release melting in a hotter mantle". Earth and Planetary Science Letters 121: 1. doi:10.1016/0012-821X(94)90028-0. 
  76. Turcotte, D. L.; Schubert, G. (2002). "4". Geodynamics (2 ed.). Cambridge, England, UK: Cambridge University Press. p. 137. ISBN 978-0-521-66624-4. 
  77. 77.0 77.1 Sclater, John G; Parsons, Barry; Jaupart, Claude (1981). "Oceans and Continents: Similarities and Differences in the Mechanisms of Heat Loss". Journal of Geophysical Research 86: 11535. doi:10.1029/JB086iB12p11535. 
  78. Richards, M. A.; Duncan, R. A.; Courtillot, V. E. (1989). "Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails". Science 246 (4926): 103–107. doi:10.1126/science.246.4926.103. PMID 17837768. http://adsabs.harvard.edu/abs/1989Sci...246..103R. Retrieved 2007-04-21. 
  79. Brown, W. K.; Wohletz, K. H. (2005). "SFT and the Earth's Tectonic Plates". Los Alamos National Laboratory. http://www.ees1.lanl.gov/Wohletz/SFT-Tectonics.htm. Retrieved 2007-03-02. 
  80. Kious, W. J.; Tilling, R. I. (1999-05-05). "Understanding plate motions". USGS. http://pubs.usgs.gov/gip/dynamic/understanding.html. Retrieved 2007-03-02. 
  81. Seligman, Courtney (2008). "The Structure of the Terrestrial Planets". Online Astronomy eText Table of Contents. cseligman.com. http://cseligman.com/text/planets/innerstructure.htm. Retrieved 2008-02-28. 
  82. Duennebier, Fred (1999-08-12). "Pacific Plate Motion". University of Hawaii. http://www.soest.hawaii.edu/GG/ASK/plate-tectonics2.html. Retrieved 2007-03-14. 
  83. Mueller, R.D.; Roest, W.R.; Royer, J.-Y.; Gahagan, L.M.; Sclater, J.G. (2007-03-07). "Age of the Ocean Floor Poster". NOAA. http://www.ngdc.noaa.gov/mgg/fliers/96mgg04.html. Retrieved 2007-03-14. 
  84. Bowring, Samuel A.; Williams, Ian S. (1999). "Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada". Contributions to Mineralogy and Petrology 134: 3. doi:10.1007/s004100050465. 
  85. Meschede, M.; Udo Barckhausen, U. (2000-11-20). "Plate Tectonic Evolution of the Cocos-Nazca Spreading Center". Proceedings of the Ocean Drilling Program. Texas A&M University. http://www-odp.tamu.edu/publications/170_SR/chap_07/chap_07.htm. Retrieved 2007-04-02. 
  86. Staff. "GPS Time Series". NASA JPL. http://sideshow.jpl.nasa.gov/mbh/series.html. Retrieved 2007-04-02. 
  87. 87.0 87.1 Pidwirny, Michael (2006). "Fundamentals of Physical Geography (2nd Edition)". PhysicalGeography.net. http://www.physicalgeography.net/fundamentals/7h.html. Retrieved 2007-03-19. 
  88. Kring, David A. "Terrestrial Impact Cratering and Its Environmental Effects". Lunar and Planetary Laboratory. http://www.lpi.usra.edu/science/kring/epo_web/impact_cratering/intro/. Retrieved 2007-03-22. 
  89. Staff. "Layers of the Earth". Volcano World. http://volcano.oregonstate.edu/vwdocs/vwlessons/plate_tectonics/part1.html. Retrieved 2007-03-11. 
  90. Jessey, David. "Weathering and Sedimentary Rocks". Cal Poly Pomona. http://geology.csupomona.edu/drjessey/class/Gsc101/Weathering.html. Retrieved 2007-03-20. 
  91. de Pater, Imke; Lissauer, Jack J. (2010). Planetary Sciences (2nd ed.). Cambridge University Press. p. 154. ISBN 0521853710. 
  92. Wenk, Hans-Rudolf; Bulakh, Andreĭ Glebovich (2004). Minerals: their constitution and origin. Cambridge University Press. p. 359. ISBN 0521529581. 
  93. FAO Staff (1995). FAO Production Yearbook 1994 (Volume 48 ed.). Rome, Italy: Food and Agriculture Organization of the United Nations. ISBN 9250038445. 
  94. Sverdrup, H. U.; Fleming, Richard H. (1942-01-01). The oceans, their physics, chemistry, and general biology. Scripps Institution of Oceanography Archives. http://repositories.cdlib.org/sio/arch/oceans/. Retrieved 2008-06-13. 
  95. "7,000 m Class Remotely Operated Vehicle KAIKO 7000". Japan Agency for Marine-Earth Science and Technology (JAMSTEC). http://www.jamstec.go.jp/e/about/equipment/ships/kaiko7000.html. Retrieved 2008-06-07. 
  96. Charette, Matthew A.; Smith, Walter H. F. (June 2010). "The Volume of Earth's Ocean". Oceanography 23 (2): 112–114. http://www.tos.org/oceanography/issues/issue_archive/issue_pdfs/23_2/23-2_charette.pdf. Retrieved 2010-06-04. 
  97. Shiklomanov, Igor A.; et al. (1999). "World Water Resources and their use Beginning of the 21st century Prepared in the Framework of IHP UNESCO". State Hydrological Institute, St. Petersburg. http://webworld.unesco.org/water/ihp/db/shiklomanov/. Retrieved 2006-08-10. 
  98. Kennish, Michael J. (2001). Practical handbook of marine science. Marine science series (3rd ed.). CRC Press. p. 35. ISBN 0849323916. 
  99. Mullen, Leslie (2002-06-11). "Salt of the Early Earth". NASA Astrobiology Magazine. http://www.astrobio.net/news/article223.html. Retrieved 2007-03-14. 
  100. Morris, Ron M. "Oceanic Processes". NASA Astrobiology Magazine. http://seis.natsci.csulb.edu/rmorris/oxy/oxy4.html. Retrieved 2007-03-14. 
  101. Scott, Michon (2006-04-24). "Earth's Big heat Bucket". NASA Earth Observatory. http://earthobservatory.nasa.gov/Study/HeatBucket/. Retrieved 2007-03-14. 
  102. Sample, Sharron (2005-06-21). "Sea Surface Temperature". NASA. http://science.hq.nasa.gov/oceans/physical/SST.html. Retrieved 2007-04-21. 
  103. Geerts, B.; Linacre, E. (November 1997). "The height of the tropopause". Resources in Atmospheric Sciences. University of Wyoming. http://www-das.uwyo.edu/~geerts/cwx/notes/chap01/tropo.html. Retrieved 2006-08-10. 
  104. 104.0 104.1 Staff (2003-10-08). "Earth's Atmosphere". NASA. http://www.nasa.gov/audience/forstudents/9-12/features/912_liftoff_atm.html. Retrieved 2007-03-21. 
  105. 105.0 105.1 Moran, Joseph M. (2005). "Weather". World Book Online Reference Center. NASA/World Book, Inc. http://www.nasa.gov/worldbook/weather_worldbook.html. Retrieved 2007-03-17. 
  106. 106.0 106.1 Berger, Wolfgang H. (2002). "The Earth's Climate System". University of California, San Diego. http://earthguide.ucsd.edu/virtualmuseum/climatechange1/cc1syllabus.shtml. Retrieved 2007-03-24. 
  107. Rahmstorf, Stefan (2003). "The Thermohaline Ocean Circulation". Potsdam Institute for Climate Impact Research. http://www.pik-potsdam.de/~stefan/thc_fact_sheet.html. Retrieved 2007-04-21. 
  108. Various (1997-07-21). "The Hydrologic Cycle". University of Illinois. http://ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/hyd/home.rxml. Retrieved 2007-03-24. 
  109. Sadava, David E.; Heller, H. Craig; Orians, Gordon H. (2006). Life, the Science of Biology (8th ed.). MacMillan. p. 1114. ISBN 0716776715. 
  110. Staff. "Climate Zones". UK Department for Environment, Food and Rural Affairs. http://www.ace.mmu.ac.uk/eae/Climate/Older/Climate_Zones.html. Retrieved 2007-03-24. 
  111. Staff (2004). "Stratosphere and Weather; Discovery of the Stratosphere". Science Week. http://scienceweek.com/2004/rmps-23.htm. Retrieved 2007-03-14. 
  112. de Córdoba, S. Sanz Fernández (2004-06-21). "100 km. Altitude Boundary for Astronautics". Fédération Aéronautique Internationale. http://www.un.org/members/list.shtml. Retrieved 2007-04-21. 
  113. Liu, S. C.; Donahue, T. M. (1974). "The Aeronomy of Hydrogen in the Atmosphere of the Earth". Journal of Atmospheric Sciences 31 (4): 1118–1136. doi:10.1175/1520-0469(1974)031<1118:TAOHIT>2.0.CO;2. http://adsabs.harvard.edu/abs/1974JAtS...31.1118L. Retrieved 2007-03-02. 
  114. Catling, David C.; Zahnle, Kevin J.; McKay, Christopher P. (2001). "Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth". Science 293 (5531): 839–843. doi:10.1126/science.1061976. PMID 11486082. http://www.sciencemag.org/cgi/content/full/293/5531/839. 
  115. Abedon, Stephen T. (1997-03-31). "History of Earth". Ohio State University. http://www.mansfield.ohio-state.edu/~sabedon/biol1010.htm. Retrieved 2007-03-19. 
  116. Hunten, D. M.; Donahue, T M (1976). "Hydrogen loss from the terrestrial planets". Annual review of earth and planetary sciences 4: 265–292. doi:10.1146/annurev.ea.04.050176.001405. http://adsabs.harvard.edu/abs/1976AREPS...4..265H. Retrieved 2008-11-07. 
  117. Fitzpatrick, Richard (2006-02-16). "MHD dynamo theory". NASA WMAP. http://farside.ph.utexas.edu/teaching/plasma/lectures/node69.html. Retrieved 2007-02-27. 
  118. Campbell, Wallace Hall (2003). Introduction to Geomagnetic Fields. New York: Cambridge University Press. p. 57. ISBN 0521822068. 
  119. Stern, David P. (2005-07-08). "Exploration of the Earth's Magnetosphere". NASA. http://www-spof.gsfc.nasa.gov/Education/wmap.html. Retrieved 2007-03-21. 
  120. "Leap seconds". Time Service Department, USNO. http://tycho.usno.navy.mil/leapsec.html. Retrieved 2008-09-23. 
  121. Seidelmann, P. Kenneth (1992). Explanatory Supplement to the Astronomical Almanac. Mill Valley, CA: University Science Books. p. 48. ISBN 0-935702-68-7. 
  122. Staff. "IERS Excess of the duration of the day to 86400s ... since 1623". International Earth Rotation and Reference Systems Service (IERS). http://hpiers.obspm.fr/eop-pc/earthor/ut1lod/lod-1623.html. Retrieved 2008-09-23. —Graph at end.
  123. Staff. "IERS Variations in the duration of the day 1962–2005". International Earth Rotation and Reference Systems Service (IERS). Archived from the original on 2007-08-13. http://web.archive.org/web/20070813203913/http://hpiers.obspm.fr/eop-pc/earthor/ut1lod/figure3.html. Retrieved 2008-09-23. 
  124. Zeilik, M.; Gregory, S. A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. p. 56. ISBN 0030062284. 
  125. 125.0 125.1 Williams, David R. (2006-02-10). "Planetary Fact Sheets". NASA. http://nssdc.gsfc.nasa.gov/planetary/planetfact.html. Retrieved 2008-09-28. —See the apparent diameters on the Sun and Moon pages.
  126. Williams, David R. (2004-09-01). "Moon Fact Sheet". NASA. http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html. Retrieved 2007-03-21. 
  127. Vázquez, M.; Montañés Rodríguez, P.; Palle, E. (2006). "The Earth as an Object of Astrophysical Interest in the Search for Extrasolar Planets" (PDF). Instituto de Astrofísica de Canarias. http://www.iac.es/folleto/research/preprints/files/PP06024.pdf. Retrieved 2007-03-21. 
  128. Astrophysicist team (2005-12-01). "Earth's location in the Milky Way". NASA. http://imagine.gsfc.nasa.gov/docs/ask_astro/answers/030827a.html. Retrieved 2008-06-11. 
  129. Bromberg, Irv (2008-05-01). "The Lengths of the Seasons (on Earth)". University of Toronto. http://www.sym454.org/seasons/. Retrieved 2008-11-08. 
  130. Animation of precession of moon orbit
  131. Fisher, Rick (1996-02-05). "Earth Rotation and Equatorial Coordinates". National Radio Astronomy Observatory. http://www.cv.nrao.edu/~rfisher/Ephemerides/earth_rot.html. Retrieved 2007-03-21. 
  132. Aphelion is 103.4% of the distance to perihelion. Due to the inverse square law, the radiation at perihelion is about 106.9% the energy at aphelion.
  133. Williams, Jack (2005-12-20). "Earth's tilt creates seasons". USAToday. http://www.usatoday.com/weather/tg/wseason/wseason.htm. Retrieved 2007-03-17. 
  134. Espenak, F.; Meeus, J. (2007-02-07). "Secular acceleration of the Moon". NASA. http://sunearth.gsfc.nasa.gov/eclipse/SEcat5/secular.html. Retrieved 2007-04-20. 
  135. Poropudas, Hannu K. J. (1991-12-16). "Using Coral as a Clock". Skeptic Tank. http://www.skepticfiles.org/origins/coralclo.htm. Retrieved 2007-04-20. 
  136. Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. (2004). "A long-term numerical solution for the insolation quantities of the Earth". Astronomy and Astrophysics 428: 261–285. doi:10.1051/0004-6361:20041335. http://adsabs.harvard.edu/abs/2004A&A...428..261L. Retrieved 2007-03-31. 
  137. Murray, N.; Holman, M (2001). "The role of chaotic resonances in the solar system". Nature 410 (6830): 773–779. doi:10.1038/35071000. PMID 11298438. http://arxiv.org/abs/astro-ph/0111602v1. Retrieved 2008-08-05. 
  138. Williams, D.M.; J.F. Kasting (1996). "Habitable planets with high obliquities". Lunar and Planetary Science 27: 1437–1438. http://adsabs.harvard.edu/abs/1996LPI....27.1437W. Retrieved 2007-03-31. 
  139. Canup, R.; Asphaug, E., RM; Asphaug, E (2001). "Origin of the Moon in a giant impact near the end of the Earth's formation". Nature 412 (6848): 708–712. doi:10.1038/35089010. PMID 11507633. 
  140. Whitehouse, David (2002-10-21). "Earth's little brother found". BBC News. http://news.bbc.co.uk/1/hi/sci/tech/2347663.stm. Retrieved 2007-03-31. 
  141. Staff (September 2003). "Astrobiology Roadmap". NASA, Lockheed Martin. http://astrobiology.arc.nasa.gov/roadmap/g1.html. Retrieved 2007-03-10. 
  142. Dole, Stephen H. (1970). Habitable Planets for Man (2nd ed.). American Elsevier Publishing Co. ISBN 0-444-00092-5. http://www.rand.org/pubs/reports/R414/. Retrieved 2007-03-11. 
  143. Ward, P. D.; Brownlee, D. (2000-01-14). Rare Earth: Why Complex Life is Uncommon in the Universe (1st ed.). New York: Springer-Verlag. ISBN 0387987010. 
  144. Hillebrand, Helmut (2004). "On the Generality of the Latitudinal Gradient". American Naturalist 163 (2): 192–211. doi:10.1086/381004. PMID 14970922. 
  145. Staff (2006-11-24). "Mineral Genesis: How do minerals form?". Non-vertebrate Paleontology Laboratory, Texas Memorial Museum. http://www.utexas.edu/tmm/npl/mineralogy/mineral_genesis/. Retrieved 2007-04-01. 
  146. Rona, Peter A. (2003). "Resources of the Sea Floor". Science 299 (5607): 673–674. doi:10.1126/science.1080679. PMID 12560541. http://www.sciencemag.org/cgi/content/full/299/5607/673?ijkey=AHVbRrqUsmdHY&keytype=ref&siteid=sci. Retrieved 2007-02-04. 
  147. Staff (2007-02-02). "Evidence is now 'unequivocal' that humans are causing global warming – UN report". United Nations. http://www.un.org/apps/news/story.asp?NewsID=21429&Cr=climate&Cr1=change. Retrieved 2007-03-07. 
  148. United States Census Bureau (2008-01-07). "World POP Clock Projection". United States Census Bureau International Database. http://www.census.gov/ipc/www/popclockworld.html. Retrieved 2008-01-07. 
  149. Staff. "World Population Prospects: The 2006 Revision". United Nations. http://www.un.org/esa/population/publications/wpp2006/wpp2006.htm. Retrieved 2007-03-07. 
  150. Staff (2007). "Human Population: Fundamentals of Growth: Growth". Population Reference Bureau. http://www.prb.org/Educators/TeachersGuides/HumanPopulation/PopulationGrowth/QuestionAnswer.aspx. Retrieved 2007-03-31. 
  151. Peel, M. C.; Finlayson, B. L.; McMahon, T. A. (2007). "Updated world map of the Köppen-Geiger climate classification". Hydrology and Earth System Sciences Discussions 4: 439–473. doi:10.5194/hessd-4-439-2007. http://www.hydrol-earth-syst-sci-discuss.net/4/439/2007/hessd-4-439-2007.html. Retrieved 2007-03-31. 
  152. Staff. "Themes & Issues". Secretariat of the Convention on Biological Diversity. http://www.biodiv.org/programmes/default.shtml. Retrieved 2007-03-29. 
  153. Staff (2006-08-15). "Canadian Forces Station (CFS) Alert". Information Management Group. http://www.tscm.com/alert.html. Retrieved 2007-03-31. 
  154. Kennedy, Paul (1989). The Rise and Fall of the Great Powers (1st ed.). Vintage. ISBN 0679720197. 
  155. "U.N. Charter Index". United Nations. http://www.un.org/aboutun/charter/. Retrieved 2008-12-23. 
  156. Staff. "International Law". United Nations. http://www.un.org/law/. Retrieved 2007-03-27. 
  157. Kuhn, Betsy (2006). The race for space: the United States and the Soviet Union compete for the new frontier. Twenty-First Century Books. p. 34. ISBN 0822559846. 
  158. Ellis, Lee (2004). Who's who of NASA Astronauts. Americana Group Publishing. ISBN 0966796144. 
  159. Shayler, David; Vis, Bert (2005). Russia's Cosmonauts: Inside the Yuri Gagarin Training Center. Birkhäuser. ISBN 0387218947. 
  160. Wade, Mark (2008-06-30). "Astronaut Statistics". Encyclopedia Astronautica. http://www.astronautix.com/articles/aststics.htm. Retrieved 2008-12-23. 
  161. "Reference Guide to the International Space Station". NASA. 2007-01-16. http://www.nasa.gov/mission_pages/station/news/ISS_Reference_Guide.html. Retrieved 2008-12-23. 
  162. Cramb, Auslan (2007-10-28). "Nasa's Discovery extends space station". Telegraph. http://www.telegraph.co.uk/earth/earthnews/3311903/Nasas-Discovery-extends-space-station.html. 
  163. Random House Unabridged Dictionary. Random House. July 2005. ISBN 0-375-42599-3. 
  164. Liungman, Carl G. (2004). "Group 29: Multi-axes symmetric, both soft and straight-lined, closed signs with crossing lines". Symbols – Encyclopedia of Western Signs and Ideograms. New York: Ionfox AB. pp. 281–282. ISBN 91-972705-0-4. 
  165. Arnett, Bill (July 16, 2006). "Earth". The Nine Planets, A Multimedia Tour of the Solar System: one star, eight planets, and more. http://nineplanets.org/earth.html. Retrieved 2010-03-09. 
  166. Dutch, S.I. (2002). "Religion as belief versus religion as fact" (PDF). Journal of Geoscience Education 50 (2): 137–144. http://nagt.org/files/nagt/jge/abstracts/Dutch_v50n2p137.pdf. Retrieved 2008-04-28. 
  167. Taner Edis (2003) (PDF). A World Designed by God: Science and Creationism in Contemporary Islam. Amherst: Prometheus. ISBN 1-59102-064-6. http://www2.truman.edu/~edis/writings/articles/CFI-2001.pdf. Retrieved 2008-04-28. 
  168. * Ross, M.R. (2005). "Who Believes What? Clearing up Confusion over Intelligent Design and Young-Earth Creationism" (PDF). Journal of Geoscience Education 53 (3): 319. http://www.nagt.org/files/nagt/jge/abstracts/Ross_v53n3p319.pdf. Retrieved 2008-04-28. 
  169. Pennock, R. T. (2003). "Creationism and intelligent design". Annu Rev Genomics Hum Genet 4: 143–63. doi:10.1146/annurev.genom.4.070802.110400. PMID 14527300. 
  170. Science, Evolution, and Creationism. Washington, D.C: National Academies Press. 2008. ISBN 0-309-10586-2. http://books.nap.edu/openbook.php?record_id=11876&page=R1. 
  171. Colburn, A.; Henriques, Laura (2006). "Clergy views on evolution, creationism, science, and religion". Journal of Research in Science Teaching 43 (4): 419–442. doi:10.1002/tea.20109. 
  172. Frye, Roland Mushat (1983). Is God a Creationist? The Religious Case Against Creation-Science. Scribner's. ISBN 0-68417-993-8. 
  173. Gould, S. J. (1997). "Nonoverlapping magisteria" (PDF). Natural History 106 (2): 16–22. http://www.jbburnett.com/resources/gould_nonoverlapping.pdf. Retrieved 2008-04-28. 
  174. Russell, Jeffrey B. "The Myth of the Flat Earth". American Scientific Affiliation. http://www.asa3.org/ASA/topics/history/1997Russell.html. Retrieved 2007-03-14. ; but see also Cosmas Indicopleustes
  175. Jacobs, James Q. (1998-02-01). "Archaeogeodesy, a Key to Prehistory". http://www.jqjacobs.net/astro/aegeo.html. Retrieved 2007-04-21. 
  176. Fuller, R. Buckminster (1963). Operating Manual for Spaceship Earth (First ed.). New York: E.P. Dutton & Co. ISBN 0-525-47433-1. http://www.futurehi.net/docs/OperatingManual.html. Retrieved 2007-04-21. 
  177. Lovelock, James E. (1979). Gaia: A New Look at Life on Earth (First ed.). Oxford: Oxford University Press. ISBN 0-19-286030-5. 
  178. For example: McMichael, Anthony J. (1993). Planetary Overload: Global Environmental Change and the Health of the Human Species. Cambridge University Press. ISBN 0521457599. 

Further reading

External links